Large Density-Functional and Basis-Set Effects for the DMSO Reductase Catalyzed Oxo-Transfer Reaction.

نویسندگان

  • Ji-Lai Li
  • Ricardo A Mata
  • Ulf Ryde
چکیده

The oxygen-atom transfer reaction catalyzed by the mononuclear molybdenum enzyme dimethyl sulfoxide reductase (DMSOR) has attracted considerable attention through both experimental and theoretical studies. We show here that this reaction is more sensitive to details of quantum mechanical calculations than what has previously been appreciated. Basis sets of at least triple-ζ quality are needed to obtain qualitatively correct results. Dispersion has an appreciable effect on the reaction, in particular the binding of the substrate or the dissociation of the product (up to 34 kJ/mol). Polar and nonpolar solvation effects are also significant, especially if the enzyme can avoid cavitation effects by using a preformed active-site cavity. Relativistic effects are considerable (up to 22 kJ/mol), but they are reasonably well treated by a relativistic effective core potential. Various density-functional methods give widely different results for the activation and reaction energy (differences of over 100 kJ/mol), mainly reflecting the amount of exact exchange in the functional, owing to the oxidation of Mo from +IV to +VI. By calibration toward local CCSD(T0) calculations, we show that none of eight tested functionals (TPSS, BP86, BLYP, B97-D, TPSSH, B3LYP, PBE0, and BHLYP) give accurate energies for all states in the reaction. Instead, B3LYP gives the best activation barrier, whereas pure functionals give more accurate energies for the other states. Our best results indicate that the enzyme follows a two-step associative reaction mechanism with an overall activation enthalpy of 63 kJ/mol, which is in excellent agreement with the experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfur K-Edge X-ray Absorption Spectroscopy and Density Functional Theory Calculations on Monooxo MoIV and Bisoxo MoVI Bis-dithiolenes: Insights into the Mechanism of Oxo Transfer in Sulfite Oxidase and Its Relation to the Mechanism of DMSO Reductase

Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reduc...

متن کامل

Basis Set Effects in Density Functional Calculations and BSSEcorrected on the Molybdate-Phosphonic acid Complex

In this research, this possibility was investigated the relative stablilty geometry and bindingenergies of the hydrogen bonds of Molybdate-Phosphonic Acid (MPA) complex in gas phase onthe basis of result of ab initio and DFT calculations. Three DFT methods have been applied forcalculations are B3LYP, BP86 and B3PW91 that have been studied in two series of basis sets:D95** and 6-31+G(d,p) for hy...

متن کامل

Comparison of thermodynamics and kinetics of reaction of the ozone with mercury, silver and gold

In this work, we report results of calculations based on the density functional theory of different species metal-ozone, containing mercury, silver and gold. The chosen species range from small molecules and large transition-metal containing ozone with mercury, silver and gold complexes. A comparative analysis of the description of the metal-oxygen bond obtained by different methodologies is pr...

متن کامل

A Convenient Base-Mediated Diastereoselective Synthesis of 2-Oxo-N,4,6-triarylcyclohex-3-enecarboxamides via Claisen-Schmidt Condensation

Sodium acetate catalyzed the multi-component reaction of acetophenone, aromatic aldehydes, and acetoacetanilide in the water-ethanol mixture (1:1) at ambient temperature via Claisen-Schmidt condensation results in the formation of highly substituted cyclohexenones in 89–98% yields. The developed efficient catalytic approach to the substituted cyclohexenones – the promising ...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2013